Research update from NTNU

university – industry collaboration in baromedicine

The Dealing with depths project

- Four-year research collaboration (2018-21/22)
- Led from NTNU, funded by the Norwegian Research Council and Equinor via the PRSI pool
- 100% dependent on diver participation and access to TechnipFMC dive campaigns
- Focused on physiological mechanisms involved in saturation divers' health and fitness
- Also includes studies of decompression sickness in sports- and recreational divers

NORMAL ADAPTATIONS TO SATURATION DIVING

DISEASE AFTER DIVING

- Decompression sickness

Acute Effects on the Human Peripheral Blood Transcriptome of Decompression Sickness Secondary to Scuba Diving

🌠 Kurt Magri¹, 🔃 Ingi	rid Eftedal ^{2,3} ,	Vanessa Petroni Magri ⁴ ,	Lyubisa Matity ¹ ,	Charles Paul Azzopardi ¹ ,
Stephen Muscat ¹ and	Nikolai Paul	Pace5*		

Hemoglobin During and Following a 4-Week Commercial Saturation Dive to 200 m

- Fatigue is common in the first days after saturation diving.
- Anemia can cause fatigue, and hemoglobin levels are low in people with anemia.
- We monitored 11 divers' hemoglobin daily through a 4-week saturation dive, and for about 2 weeks after.
- The divers did the hemoglobin readings themselves.
 We collected and analyzed the data.

Hemoglobin During and Following a 4-Week Commercial Saturation Dive to 200 m

Damian Łuczyński¹, 🌉 Jacky Lautridou¹, 🧾 Astrid Hjelde¹, 🧸 Roxane Monnoyer¹ and 🛍 Ingrid Eftedal^{1,2*}

The divers were mildly anemic for one week after saturation

Over to Roxane

What happens in the oral cavity during saturation diving?

What do we know?

• Saturation diving: affects all life present

- The healthy oral cavity: home to over 700 bacterial species
 - Oral bacteria are classified according to their oxygen needs
- Oral microbiota: microorganisms inhabiting the oral cavity
 - Interactions with the host: symbiotic relationships to keep the host healthy
 - **Diversity** due to the host's lifestyle or the environment of the oral cavity

Why does it matter?

• Environmental adaptations of the oral microbiota in contact with the breathing gas during the heliox saturation dive

Composition?

• Identify the types of bacteria present in the divers' mouth

Why does it matter?

• Environmental adaptations of the oral microbiota in contact with the breathing gas during the heliox saturation dive

Composition?

• Identify the types of bacteria present in the divers' mouth

Activity?

• Investigate whether changes in bacterial composition affect the divers' health and fitness

Increase of facultative anaerobes/aerobes

Bacterial composition

Shifts in the Oral Microbiota During a Four-Week Commercial Saturation Dive to 200 Meters 👢 Roxane Monnoyer¹⁷, Kjersti Haugum²³, 🌉 Jacky Lautridou³, Arnar Flatberg³, Astrid Hjelde¹ and

Decrease of obligate anaerobes

Composition of the oral microbiota

- ✓ Reduction in the bacterial complexity
- ✓ Shift of aerobic bacteria over anaerobic bacteria
- ✓ Transient changes during the heliox dive

Vitamin B₁₂ biosynthesis

Bottom phase
Post-saturation

"Vitamin B₁₂ and folate are involved in the production of red blood cells and are linked to EPO activity" (Deb, Swinton, & Dolan, 2016)

Functional Profiling Reveals Altered Metabolic Activity in Divers' Oral Microbiota During Commercial Heliox Saturation Diving

Roxane Monnoyer^(*), 🔛 Ingrid Eftedal¹², 🧾 Astrid Hjelde¹, 🔝 Sanjoy Deb¹³, 🔝 Kjersti Haugum¹³ and 🔝

Activity of the oral microbiota

- ✓ Decrease in vitamin B_{12} biosynthesis
- ✓ Supports the nutritional recommendations for $vit.B_{12}$ supplements as part of the divers' diet

Acute Effects on the Human Peripheral Blood Transcriptome of Decompression Sickness Secondary to Scuba Diving

Kurt Magri¹, logrid Eftedal^{2,3}, Vanessa Petroni Magri⁴, Lyubisa Matity¹, Charles Paul Azzopardi¹, Stephen Muscat¹ and Nikolai Paul Pace^{5*}

Mapping inflammation and immune responses in decompression sickness

Decompression sickness (DCS)

is caused by dissolved gases emerging from solution in the form of bubbles inside body tissues during decompression

Why did we perform this study?

The pathophysiology of DCS is not completely understood

There are limited treatment options

10-20% of cases result in long-term sequelae

Better understanding of the pathophysiology may identify druggable targets

The necessary ingredients for the DCS study

Clinical competence and treatment facilities

Analytic platforms for molecular biology and bioinformatics

Divers with and without DCS

The grail

Malta

Cutis marmorata in divers with DCS

- A cardinal sign when appearing in divers with suspected DCS
- Appears in type 1 DCS (non-neurological), with high likelihood for progression into neurological DCS
- Hypnotized to be caused by:
 - 1) local formation of bubbles in the skin or blood vessels; or
 - 2) arterialization of venous bubbles across a right to left shunt (RLS/patent foramen ovale)

The analysis

Blood RNA extraction

Conversion to cDNA + library prep

Sequencing

Bioinformatics:
Data processing
and statistics

Biological interpretation

Main conclusions

DCS is accompanied by a dynamic regulation of **inflammatory and innate immune pathways**, with a pronounced increase in activity characteristic of the myeloid lineage. "

Oxidative stress: "there is prominent activation of free radical scavenging mechanisms.

When the levee breaks: Our findings reinforce the role of acute inflammation in DCS and provide evidence for a continuum between the physiological response elicited by uneventful diving and diving complicated by DCS

How can we apply the results?

The long-term goal: Biomarker development for rapid identification of DCS vs. differential diagnoses.

Fundamental physiology: Improved understanding of the interplay between environmental stress and pathophysiological responses.

Come talk with us in the exhibition area